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Errors during the
measurement process

3.1 Introduction

Errors in measurement systems can be divided into those that arise during the measure-
ment process and those that arise due to later corruption of the measurement signal
by induced noise during transfer of the signal from the point of measurement to some
other point. This chapter considers only the first of these, with discussion on induced
noise being deferred to Chapter 5.

It is extremely important in any measurement system to reduce errors to the minimum
possible level and then to quantify the maximum remaining error that may exist in any
instrument output reading. However, in many cases, there is a further complication
that the final output from a measurement system is calculated by combining together
two or more measurements of separate physical variables. In this case, special consid-
eration must also be given to determining how the calculated error levels in each
separate measurement should be combined together to give the best estimate of the
most likely error magnitude in the calculated output quantity. This subject is considered
in section 3.6.

The starting point in the quest to reduce the incidence of errors arising during the
measurement process is to carry out a detailed analysis of all error sources in the
system. Each of these error sources can then be considered in turn, looking for ways
of eliminating or at least reducing the magnitude of errors. Errors arising during the
measurement process can be divided into two groups, known as systematic errors and
random errors.

Systematic errors describe errors in the output readings of a measurement system that
are consistently on one side of the correct reading, i.e. either all the errors are positive
or they are all negative. Two major sources of systematic errors are system disturbance
during measurement and the effect of environmental changes (modifying inputs), as
discussed in sections 3.2.1 and 3.2.2. Other sources of systematic error include bent
meter needles, the use of uncalibrated instruments, drift in instrument characteristics
and poor cabling practices. Even when systematic errors due to the above factors have
been reduced or eliminated, some errors remain that are inherent in the manufacture
of an instrument. These are quantified by the accuracy figure quoted in the published
specifications contained in the instrument data sheet.
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Random errors are perturbations of the measurement either side of the true value
caused by random and unpredictable effects, such that positive errors and negative
errors occur in approximately equal numbers for a series of measurements made of
the same quantity. Such perturbations are mainly small, but large perturbations occur
from time to time, again unpredictably. Random errors often arise when measure-
ments are taken by human observation of an analogue meter, especially where this
involves interpolation between scale points. Electrical noise can also be a source of
random errors. To a large extent, random errors can be overcome by taking the same
measurement a number of times and extracting a value by averaging or other statistical
techniques, as discussed in section 3.5. However, any quantification of the measure-
ment value and statement of error bounds remains a statistical quantity. Because of
the nature of random errors and the fact that large perturbations in the measured quan-
tity occur from time to time, the best that we can do is to express measurements
in probabilistic terms: we may be able to assign a 95% or even 99% confidence
level that the measurement is a certain value within error bounds of, say, š1%, but
we can never attach a 100% probability to measurement values that are subject to
random errors.

Finally, a word must be said about the distinction between systematic and random
errors. Error sources in the measurement system must be examined carefully to deter-
mine what type of error is present, systematic or random, and to apply the appropriate
treatment. In the case of manual data measurements, a human observer may make
a different observation at each attempt, but it is often reasonable to assume that the
errors are random and that the mean of these readings is likely to be close to the
correct value. However, this is only true as long as the human observer is not intro-
ducing a parallax-induced systematic error as well by persistently reading the position
of a needle against the scale of an analogue meter from one side rather than from
directly above. In that case, correction would have to be made for this systematic error
(bias) in the measurements before statistical techniques were applied to reduce the
effect of random errors.

3.2 Sources of systematic error

Systematic errors in the output of many instruments are due to factors inherent in
the manufacture of the instrument arising out of tolerances in the components of the
instrument. They can also arise due to wear in instrument components over a period
of time. In other cases, systematic errors are introduced either by the effect of envi-
ronmental disturbances or through the disturbance of the measured system by the act
of measurement. These various sources of systematic error, and ways in which the
magnitude of the errors can be reduced, are discussed below.

3.2.1 System disturbance due to measurement

Disturbance of the measured system by the act of measurement is a common source
of systematic error. If we were to start with a beaker of hot water and wished to
measure its temperature with a mercury-in-glass thermometer, then we would take the
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thermometer, which would initially be at room temperature, and plunge it into the
water. In so doing, we would be introducing a relatively cold mass (the thermometer)
into the hot water and a heat transfer would take place between the water and the
thermometer. This heat transfer would lower the temperature of the water. Whilst
the reduction in temperature in this case would be so small as to be undetectable
by the limited measurement resolution of such a thermometer, the effect is finite and
clearly establishes the principle that, in nearly all measurement situations, the process
of measurement disturbs the system and alters the values of the physical quantities
being measured.

A particularly important example of this occurs with the orifice plate. This is placed
into a fluid-carrying pipe to measure the flow rate, which is a function of the pressure
that is measured either side of the orifice plate. This measurement procedure causes a
permanent pressure loss in the flowing fluid. The disturbance of the measured system
can often be very significant.

Thus, as a general rule, the process of measurement always disturbs the system being
measured. The magnitude of the disturbance varies from one measurement system to
the next and is affected particularly by the type of instrument used for measurement.
Ways of minimizing disturbance of measured systems is an important consideration in
instrument design. However, an accurate understanding of the mechanisms of system
disturbance is a prerequisite for this.

Measurements in electric circuits
In analysing system disturbance during measurements in electric circuits, Thévenin’s
theorem (see Appendix 3) is often of great assistance. For instance, consider the circuit
shown in Figure 3.1(a) in which the voltage across resistor R5 is to be measured by a
voltmeter with resistance Rm. Here, Rm acts as a shunt resistance across R5, decreasing
the resistance between points AB and so disturbing the circuit. Therefore, the voltage
Em measured by the meter is not the value of the voltage E0 that existed prior to
measurement. The extent of the disturbance can be assessed by calculating the open-
circuit voltage E0 and comparing it with Em.

Thévenin’s theorem allows the circuit of Figure 3.1(a) comprising two voltage
sources and five resistors to be replaced by an equivalent circuit containing a single
resistance and one voltage source, as shown in Figure 3.1(b). For the purpose of
defining the equivalent single resistance of a circuit by Thévenin’s theorem, all voltage
sources are represented just by their internal resistance, which can be approximated
to zero, as shown in Figure 3.1(c). Analysis proceeds by calculating the equivalent
resistances of sections of the circuit and building these up until the required equivalent
resistance of the whole of the circuit is obtained. Starting at C and D, the circuit to
the left of C and D consists of a series pair of resistances (R1 and R2) in parallel with
R3, and the equivalent resistance can be written as:

1

RCD
D 1

R1 C R2
C 1

R3
or RCD D �R1 C R2�R3

R1 C R2 C R3

Moving now to A and B, the circuit to the left consists of a pair of series resistances
(RCD and R4) in parallel with R5. The equivalent circuit resistance RAB can thus be
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Fig. 3.1 Analysis of circuit loading: (a) a circuit in which the voltage across R5 is to be measured; (b) equivalent
circuit by Thévenin’s theorem; (c) the circuit used to find the equivalent single resistance RAB.

written as:
1

RAB
D 1

RCD C R4
C 1

R5
or RAB D �R4 C RCD�R5

R4 C RCD C R5

Substituting for RCD using the expression derived previously, we obtain:

RAB D

[
�R1 C R2�R3

R1 C R2 C R3
C R4

]
R5

�R1 C R2�R3

R1 C R2 C R3
C R4 C R5

�3.1�
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Defining I as the current flowing in the circuit when the measuring instrument is
connected to it, we can write:

I D E0

RAB C Rm
,

and the voltage measured by the meter is then given by:

Em D RmE0

RAB C Rm
.

In the absence of the measuring instrument and its resistance Rm, the voltage across
AB would be the equivalent circuit voltage source whose value is E0. The effect of
measurement is therefore to reduce the voltage across AB by the ratio given by:

Em

E0
D Rm

RAB C Rm
�3.2�

It is thus obvious that as Rm gets larger, the ratio Em/E0 gets closer to unity,
showing that the design strategy should be to make Rm as high as possible to minimize
disturbance of the measured system. (Note that we did not calculate the value of E0,
since this is not required in quantifying the effect of Rm.)

Example 3.1
Suppose that the components of the circuit shown in Figure 3.1(a) have the following
values:

R1 D 400 	; R2 D 600 	; R3 D 1000 	, R4 D 500 	; R5 D 1000 	

The voltage across AB is measured by a voltmeter whose internal resistance is 9500 	.
What is the measurement error caused by the resistance of the measuring instrument?

Solution
Proceeding by applying Thévenin’s theorem to find an equivalent circuit to that of
Figure 3.1(a) of the form shown in Figure 3.1(b), and substituting the given component
values into the equation for RAB (3.1), we obtain:

RAB D [�10002/2000� C 500]1000

�10002/2000� C 500 C 1000
D 10002

2000
D 500 	

From equation (3.2), we have:
Em

E0
D Rm

RAB C Rm

The measurement error is given by �E0 � Em�:

E0 � Em D E0

(
1 � Rm

RAB C Rm

)

Substituting in values:

E0 � Em D E0

(
1 � 9500

10 000

)
D 0.95E0

Thus, the error in the measured value is 5%.
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At this point, it is interesting to note the constraints that exist when practical attempts
are made to achieve a high internal resistance in the design of a moving-coil voltmeter.
Such an instrument consists of a coil carrying a pointer mounted in a fixed magnetic
field. As current flows through the coil, the interaction between the field generated
and the fixed field causes the pointer it carries to turn in proportion to the applied
current (see Chapter 6 for further details). The simplest way of increasing the input
impedance (the resistance) of the meter is either to increase the number of turns in the
coil or to construct the same number of coil turns with a higher-resistance material.
However, either of these solutions decreases the current flowing in the coil, giving less
magnetic torque and thus decreasing the measurement sensitivity of the instrument (i.e.
for a given applied voltage, we get less deflection of the pointer). This problem can be
overcome by changing the spring constant of the restraining springs of the instrument,
such that less torque is required to turn the pointer by a given amount. However, this
reduces the ruggedness of the instrument and also demands better pivot design to reduce
friction. This highlights a very important but tiresome principle in instrument design:
any attempt to improve the performance of an instrument in one respect generally
decreases the performance in some other aspect. This is an inescapable fact of life
with passive instruments such as the type of voltmeter mentioned, and is often the
reason for the use of alternative active instruments such as digital voltmeters, where
the inclusion of auxiliary power greatly improves performance.

Bridge circuits for measuring resistance values are a further example of the need for
careful design of the measurement system. The impedance of the instrument measuring
the bridge output voltage must be very large in comparison with the component resist-
ances in the bridge circuit. Otherwise, the measuring instrument will load the circuit
and draw current from it. This is discussed more fully in Chapter 7.

3.2.2 Errors due to environmental inputs

An environmental input is defined as an apparently real input to a measurement system
that is actually caused by a change in the environmental conditions surrounding the
measurement system. The fact that the static and dynamic characteristics specified
for measuring instruments are only valid for particular environmental conditions (e.g.
of temperature and pressure) has already been discussed at considerable length in
Chapter 2. These specified conditions must be reproduced as closely as possible during
calibration exercises because, away from the specified calibration conditions, the char-
acteristics of measuring instruments vary to some extent and cause measurement errors.
The magnitude of this environment-induced variation is quantified by the two constants
known as sensitivity drift and zero drift, both of which are generally included in the
published specifications for an instrument. Such variations of environmental conditions
away from the calibration conditions are sometimes described as modifying inputs to
the measurement system because they modify the output of the system. When such
modifying inputs are present, it is often difficult to determine how much of the output
change in a measurement system is due to a change in the measured variable and
how much is due to a change in environmental conditions. This is illustrated by the
following example. Suppose we are given a small closed box and told that it may
contain either a mouse or a rat. We are also told that the box weighs 0.1 kg when
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empty. If we put the box onto bathroom scales and observe a reading of 1.0 kg, this
does not immediately tell us what is in the box because the reading may be due to one
of three things:

(a) a 0.9 kg rat in the box (real input)
(b) an empty box with a 0.9 kg bias on the scales due to a temperature change (envi-

ronmental input)
(c) a 0.4 kg mouse in the box together with a 0.5 kg bias (real + environmental inputs).

Thus, the magnitude of any environmental input must be measured before the value
of the measured quantity (the real input) can be determined from the output reading
of an instrument.

In any general measurement situation, it is very difficult to avoid environmental
inputs, because it is either impractical or impossible to control the environmental condi-
tions surrounding the measurement system. System designers are therefore charged with
the task of either reducing the susceptibility of measuring instruments to environmental
inputs or, alternatively, quantifying the effect of environmental inputs and correcting
for them in the instrument output reading. The techniques used to deal with envi-
ronmental inputs and minimize their effect on the final output measurement follow a
number of routes as discussed below.

3.2.3 Wear in instrument components

Systematic errors can frequently develop over a period of time because of wear in
instrument components. Recalibration often provides a full solution to this problem.

3.2.4 Connecting leads

In connecting together the components of a measurement system, a common source
of error is the failure to take proper account of the resistance of connecting leads (or
pipes in the case of pneumatically or hydraulically actuated measurement systems). For
instance, in typical applications of a resistance thermometer, it is common to find that
the thermometer is separated from other parts of the measurement system by perhaps
100 metres. The resistance of such a length of 20 gauge copper wire is 7 	, and there
is a further complication that such wire has a temperature coefficient of 1 m	/°C.

Therefore, careful consideration needs to be given to the choice of connecting leads.
Not only should they be of adequate cross-section so that their resistance is minimized,
but they should be adequately screened if they are thought likely to be subject to
electrical or magnetic fields that could otherwise cause induced noise. Where screening
is thought essential, then the routing of cables also needs careful planning. In one
application in the author’s personal experience involving instrumentation of an electric-
arc steel making furnace, screened signal-carrying cables between transducers on the
arc furnace and a control room at the side of the furnace were initially corrupted by
high amplitude 50 Hz noise. However, by changing the route of the cables between the
transducers and the control room, the magnitude of this induced noise was reduced by
a factor of about ten.
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3.3 Reduction of systematic errors

The prerequisite for the reduction of systematic errors is a complete analysis of the
measurement system that identifies all sources of error. Simple faults within a system,
such as bent meter needles and poor cabling practices, can usually be readily and
cheaply rectified once they have been identified. However, other error sources require
more detailed analysis and treatment. Various approaches to error reduction are consid-
ered below.

3.3.1 Careful instrument design

Careful instrument design is the most useful weapon in the battle against environmental
inputs, by reducing the sensitivity of an instrument to environmental inputs to as low
a level as possible. For instance, in the design of strain gauges, the element should be
constructed from a material whose resistance has a very low temperature coefficient
(i.e. the variation of the resistance with temperature is very small). However, errors
due to the way in which an instrument is designed are not always easy to correct, and
a choice often has to be made between the high cost of redesign and the alternative of
accepting the reduced measurement accuracy if redesign is not undertaken.

3.3.2 Method of opposing inputs

The method of opposing inputs compensates for the effect of an environmental input
in a measurement system by introducing an equal and opposite environmental input
that cancels it out. One example of how this technique is applied is in the type of milli-
voltmeter shown in Figure 3.2. This consists of a coil suspended in a fixed magnetic
field produced by a permanent magnet. When an unknown voltage is applied to the
coil, the magnetic field due to the current interacts with the fixed field and causes the
coil (and a pointer attached to the coil) to turn. If the coil resistance Rcoil is sensitive to
temperature, then any environmental input to the system in the form of a temperature
change will alter the value of the coil current for a given applied voltage and so alter
the pointer output reading. Compensation for this is made by introducing a compen-
sating resistance Rcomp into the circuit, where Rcomp has a temperature coefficient that
is equal in magnitude but opposite in sign to that of the coil. Thus, in response to an
increase in temperature, Rcoil increases but Rcomp decreases, and so the total resistance
remains approximately the same.

3.3.3 High-gain feedback

The benefit of adding high-gain feedback to many measurement systems is illustrated
by considering the case of the voltage-measuring instrument whose block diagram is
shown in Figure 3.3. In this system, the unknown voltage Ei is applied to a motor
of torque constant Km, and the induced torque turns a pointer against the restraining
action of a spring with spring constant Ks. The effect of environmental inputs on the
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Fig. 3.3 Block diagram for voltage-measuring instrument.

motor and spring constants is represented by variables Dm and Ds. In the absence of
environmental inputs, the displacement of the pointer X0 is given by: X0 D KmKsEi.
However, in the presence of environmental inputs, both Km and Ks change, and the
relationship between X0 and Ei can be affected greatly. Therefore, it becomes difficult
or impossible to calculate Ei from the measured value of X0. Consider now what
happens if the system is converted into a high-gain, closed-loop one, as shown in
Figure 3.4, by adding an amplifier of gain constant Ka and a feedback device with
gain constant Kf. Assume also that the effect of environmental inputs on the values of
Ka and Kf are represented by Da and Df. The feedback device feeds back a voltage
E0 proportional to the pointer displacement X0. This is compared with the unknown
voltage Ei by a comparator and the error is amplified. Writing down the equations of
the system, we have:

E0 D KfX0; X0 D �Ei � E0�KaKmKs D �Ei � KfX0�KaKmKs
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Fig. 3.4 Block diagram of voltage-measuring instrument with high-gain feedback.

Thus:

EiKaKmKs D �1 C KfKaKmKs�X0

i.e.

X0 D KaKmKs

1 C KfKaKmKs
Ei �3.3�

Because Ka is very large (it is a high-gain amplifier), Kf. Ka. Km. Ks × 1, and equation
(3.3) reduces to:

X0 D Ei/Kf

This is a highly important result because we have reduced the relationship between X0

and Ei to one that involves only Kf. The sensitivity of the gain constants Ka, Km and
Ks to the environmental inputs Da, Dm and Ds has thereby been rendered irrelevant,
and we only have to be concerned with one environmental input Df. Conveniently, it
is usually easy to design a feedback device that is insensitive to environmental inputs:
this is much easier than trying to make a motor or spring insensitive. Thus, high-
gain feedback techniques are often a very effective way of reducing a measurement
system’s sensitivity to environmental inputs. However, one potential problem that must
be mentioned is that there is a possibility that high-gain feedback will cause instability
in the system. Therefore, any application of this method must include careful stability
analysis of the system.

3.3.4 Calibration

Instrument calibration is a very important consideration in measurement systems and
calibration procedures are considered in detail in Chapter 4. All instruments suffer drift
in their characteristics, and the rate at which this happens depends on many factors,
such as the environmental conditions in which instruments are used and the frequency
of their use. Thus, errors due to instruments being out of calibration can usually be
rectified by increasing the frequency of recalibration.
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3.3.5 Manual correction of output reading

In the case of errors that are due either to system disturbance during the act of measure-
ment or due to environmental changes, a good measurement technician can substantially
reduce errors at the output of a measurement system by calculating the effect of such
systematic errors and making appropriate correction to the instrument readings. This is
not necessarily an easy task, and requires all disturbances in the measurement system
to be quantified. This procedure is carried out automatically by intelligent instruments.

3.3.6 Intelligent instruments

Intelligent instruments contain extra sensors that measure the value of environmental
inputs and automatically compensate the value of the output reading. They have the
ability to deal very effectively with systematic errors in measurement systems, and
errors can be attenuated to very low levels in many cases. A more detailed analysis of
intelligent instruments can be found in Chapter 9.

3.4 Quantification of systematic errors

Once all practical steps have been taken to eliminate or reduce the magnitude of system-
atic errors, the final action required is to estimate the maximum remaining error that
may exist in a measurement due to systematic errors. Unfortunately, it is not always
possible to quantify exact values of a systematic error, particularly if measurements
are subject to unpredictable environmental conditions. The usual course of action is
to assume mid-point environmental conditions and specify the maximum measurement
error as šx% of the output reading to allow for the maximum expected deviation in
environmental conditions away from this mid-point. Data sheets supplied by instru-
ment manufacturers usually quantify systematic errors in this way, and such figures
take account of all systematic errors that may be present in output readings from the
instrument.

3.5 Random errors

Random errors in measurements are caused by unpredictable variations in the measure-
ment system. They are usually observed as small perturbations of the measurement
either side of the correct value, i.e. positive errors and negative errors occur in approx-
imately equal numbers for a series of measurements made of the same constant quantity.
Therefore, random errors can largely be eliminated by calculating the average of
a number of repeated measurements, provided that the measured quantity remains
constant during the process of taking the repeated measurements. This averaging
process of repeated measurements can be done automatically by intelligent instruments,
as discussed in Chapter 9. The degree of confidence in the calculated mean/median
values can be quantified by calculating the standard deviation or variance of the data,
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these being parameters that describe how the measurements are distributed about the
mean value/median. All of these terms are explained more fully in section 3.5.1.

3.5.1 Statistical analysis of measurements subject to random
errors

Mean and median values
The average value of a set of measurements of a constant quantity can be expressed
as either the mean value or the median value. As the number of measurements
increases, the difference between the mean value and median values becomes very
small. However, for any set of n measurements x1, x2 Ð Ð Ð xn of a constant quantity, the
most likely true value is the mean given by:

xmean D x1 C x2 C Ð Ð Ð xn

n
�3.4�

This is valid for all data sets where the measurement errors are distributed equally
about the zero error value, i.e. where the positive errors are balanced in quantity and
magnitude by the negative errors.

The median is an approximation to the mean that can be written down without having
to sum the measurements. The median is the middle value when the measurements
in the data set are written down in ascending order of magnitude. For a set of n
measurements x1, x2 Ð Ð Ð xn of a constant quantity, written down in ascending order of
magnitude, the median value is given by:

xmedian D xnC1/2 �3.5�

Thus, for a set of 9 measurements x1, x2 Ð Ð Ð x9 arranged in order of magnitude, the
median value is x5. For an even number of measurements, the median value is mid-
way between the two centre values, i.e. for 10 measurements x1 Ð Ð Ð x10, the median
value is given by: �x5 C x6�/2.

Suppose that the length of a steel bar is measured by a number of different observers
and the following set of 11 measurements are recorded (units mm). We will call this
measurement set A.

398 420 394 416 404 408 400 420 396 413 430 �Measurement set A�

Using (3.4) and (3.5), mean D 409.0 and median D 408. Suppose now that the measure-
ments are taken again using a better measuring rule, and with the observers taking more
care, to produce the following measurement set B:

409 406 402 407 405 404 407 404 407 407 408 �Measurement set B�

For these measurements, mean D 406.0 and median D 407. Which of the two measure-
ment sets A and B, and the corresponding mean and median values, should we have
most confidence in? Intuitively, we can regard measurement set B as being more reli-
able since the measurements are much closer together. In set A, the spread between
the smallest (396) and largest (430) value is 34, whilst in set B, the spread is only 6.
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ž Thus, the smaller the spread of the measurements, the more confidence we have in
the mean or median value calculated.

Let us now see what happens if we increase the number of measurements by extending
measurement set B to 23 measurements. We will call this measurement set C.

409 406 402 407 405 404 407 404 407 407 408 406 410 406 405 408

406 409 406 405 409 406 407 �Measurement set C�

Now, mean D 406.5 and median D 406.

ž This confirms our earlier statement that the median value tends towards the mean
value as the number of measurements increases.

Standard deviation and variance
Expressing the spread of measurements simply as the range between the largest and
smallest value is not in fact a very good way of examining how the measurement
values are distributed about the mean value. A much better way of expressing the
distribution is to calculate the variance or standard deviation of the measurements. The
starting point for calculating these parameters is to calculate the deviation (error) di of
each measurement xi from the mean value xmean:

di D xi � xmean �3.6�

The variance (V) is then given by:Ł

V D d2
1 C d2

2 Ð Ð Ð d2
n

n � 1
�3.7�

The standard deviation ��� is simply the square root of the variance. ThusŁ:

� D p
V D

√
d2

1 C d2
2 Ð Ð Ð d2

n

n � 1
�3.8�

Example 3.2
Calculate � and V for measurement sets A, B and C above.

Ł Mathematically minded readers may have observed that the expressions for V and � differ from the
formal mathematical definitions, which have �n� instead of �n � 1� in the denominator. This difference
arises because the mathematical definition is for an infinite data set, whereas, in the case of measurements,
we are concerned only with finite data sets. For a finite set of measurements �xi� i D 1, n, the mean xm
will differ from the true mean µ of the infinite data set that the finite set is part of. If somehow we knew
the true mean µ of a set of measurements, then the deviations di could be calculated as the deviation of
each data value from the true mean and it would then be correct to calculate V and � using �n� instead
of �n � 1�. However, in normal situations, using �n � 1� in the denominator of equations (3.7) and (3.8)
produces a value that is statistically closer to the correct value.
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Solution
First, draw a table of measurements and deviations for set A (mean D 409 as calculated
earlier):

Measurement 398 420 394 416 404 408 400 420 396 413 430
Deviation from mean �11 C11 �15 C7 �5 �1 �9 C11 �13 C4 C21
(deviations)2 121 121 225 49 25 1 81 121 169 16 441

∑
�deviations2� D 1370; n D number of measurements D 11.

Then, from (3.7), V D ∑
�deviations2�/n � 1; D 1370/10 D 137; � D p

V D 11.7.
The measurements and deviations for set B are (mean D 406 as calculated earlier):

Measurement 409 406 402 407 405 404 407 404 407 407 408
Deviation from mean C3 0 �4 C1 �1 �2 C1 �2 C1 C1 C2
(deviations)2 9 0 16 1 1 4 1 4 1 1 4

From this data, using (3.7) and (3.8), V D 4.2 and � D 2.05.
The measurements and deviations for set C are (mean D 406.5 as calculated earlier):

Measurement 409 406 402 407 405 404 407 404
Deviation from mean C2.5 �0.5 �4.5 C0.5 �1.5 �2.5 C0.5 �2.5
(deviations)2 6.25 0.25 20.25 0.25 2.25 6.25 0.25 6.25

Measurement 407 407 408 406 410 406 405 408
Deviation from mean C0.5 C0.5 C1.5 �0.5 C3.5 �0.5 �1.5 C1.5
(deviations)2 0.25 0.25 2.25 0.25 12.25 0.25 2.25 2.25

Measurement 406 409 406 405 409 406 407
Deviation from mean �0.5 C2.5 �0.5 �1.5 C2.5 �0.5 C0.5
(deviations)2 0.25 6.25 0.25 2.25 6.25 0.25 0.25

From this data, using (3.7) and (3.8), V D 3.53 and � D 1.88.

Note that the smaller values of V and � for measurement set B compared with A
correspond with the respective size of the spread in the range between maximum and
minimum values for the two sets.

ž Thus, as V and � decrease for a measurement set, we are able to express greater
confidence that the calculated mean or median value is close to the true value, i.e.
that the averaging process has reduced the random error value close to zero.

ž Comparing V and � for measurement sets B and C, V and � get smaller as the number
of measurements increases, confirming that confidence in the mean value increases
as the number of measurements increases.



46 Errors during the measurement process

We have observed so far that random errors can be reduced by taking the average
(mean or median) of a number of measurements. However, although the mean or
median value is close to the true value, it would only become exactly equal to the true
value if we could average an infinite number of measurements. As we can only make
a finite number of measurements in a practical situation, the average value will still
have some error. This error can be quantified as the standard error of the mean, which
will be discussed in detail a little later. However, before that, the subject of graphical
analysis of random measurement errors needs to be covered.

3.5.2 Graphical data analysis techniques – frequency
distributions

Graphical techniques are a very useful way of analysing the way in which random
measurement errors are distributed. The simplest way of doing this is to draw a
histogram, in which bands of equal width across the range of measurement values
are defined and the number of measurements within each band is counted. Figure 3.5
shows a histogram for set C of the length measurement data given in section 3.5.1, in
which the bands chosen are 2 mm wide. For instance, there are 11 measurements in
the range between 405.5 and 407.5 and so the height of the histogram for this range is
11 units. Also, there are 5 measurements in the range from 407.5 to 409.5 and so the
height of the histogram over this range is 5 units. The rest of the histogram is completed
in a similar fashion. (N.B. The scaling of the bands was deliberately chosen so that
no measurements fell on the boundary between different bands and caused ambiguity
about which band to put them in.) Such a histogram has the characteristic shape shown
by truly random data, with symmetry about the mean value of the measurements.

As it is the actual value of measurement error that is usually of most concern,
it is often more useful to draw a histogram of the deviations of the measurements

Number
of measurements

Measurements
(Deviations)

10

5

0
401.5
(−0.5)

403.5
(−0.3)

405.5
(−0.1)

407.5
(+0.1)

409.5
(+0.3)

411.5
(+0.5)

Fig. 3.5 Histogram of measurements and deviations.
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from the mean value rather than to draw a histogram of the measurements them-
selves. The starting point for this is to calculate the deviation of each measurement
away from the calculated mean value. Then a histogram of deviations can be drawn
by defining deviation bands of equal width and counting the number of deviation
values in each band. This histogram has exactly the same shape as the histogram
of the raw measurements except that the scaling of the horizontal axis has to be
redefined in terms of the deviation values (these units are shown in brackets on
Figure 3.5).

Let us now explore what happens to the histogram of deviations as the number
of measurements increases. As the number of measurements increases, smaller bands
can be defined for the histogram, which retains its basic shape but then consists of a
larger number of smaller steps on each side of the peak. In the limit, as the number
of measurements approaches infinity, the histogram becomes a smooth curve known
as a frequency distribution curve as shown in Figure 3.6. The ordinate of this curve
is the frequency of occurrence of each deviation value, F�D�, and the abscissa is the
magnitude of deviation, D.

The symmetry of Figures 3.5 and 3.6 about the zero deviation value is very useful
for showing graphically that the measurement data only has random errors. Although
these figures cannot easily be used to quantify the magnitude and distribution of the
errors, very similar graphical techniques do achieve this. If the height of the frequency
distribution curve is normalized such that the area under it is unity, then the curve in this
form is known as a probability curve, and the height F�D� at any particular deviation
magnitude D is known as the probability density function (p.d.f.). The condition that

F(D)

D
D2D1DpD0

Fig. 3.6 Frequency distribution curve of deviations.
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the area under the curve is unity can be expressed mathematically as:∫ 1

�1
F�D� dD D 1

The probability that the error in any one particular measurement lies between two levels
D1 and D2 can be calculated by measuring the area under the curve contained between
two vertical lines drawn through D1 and D2, as shown by the right-hand hatched area
in Figure 3.6. This can be expressed mathematically as:

P�D1 � D � D2� D
∫ D2

D1

F�D� dD �3.9�

Of particular importance for assessing the maximum error likely in any one measure-
ment is the cumulative distribution function (c.d.f.). This is defined as the probability
of observing a value less than or equal to D0, and is expressed mathematically as:

P�D � D0� D
∫ D0

�1
F�D� dD �3.10�

Thus, the c.d.f. is the area under the curve to the left of a vertical line drawn through
D0, as shown by the left-hand hatched area on Figure 3.6.

The deviation magnitude Dp corresponding with the peak of the frequency distri-
bution curve (Figure 3.6) is the value of deviation that has the greatest probability. If
the errors are entirely random in nature, then the value of Dp will equal zero. Any
non-zero value of Dp indicates systematic errors in the data, in the form of a bias that
is often removable by recalibration.

Gaussian distribution
Measurement sets that only contain random errors usually conform to a distribution
with a particular shape that is called Gaussian, although this conformance must always
be tested (see the later section headed ‘Goodness of fit’). The shape of a Gaussian curve
is such that the frequency of small deviations from the mean value is much greater than
the frequency of large deviations. This coincides with the usual expectation in measure-
ments subject to random errors that the number of measurements with a small error is
much larger than the number of measurements with a large error. Alternative names
for the Gaussian distribution are the Normal distribution or Bell-shaped distribution.
A Gaussian curve is formally defined as a normalized frequency distribution that is
symmetrical about the line of zero error and in which the frequency and magnitude of
quantities are related by the expression:

F�x� D 1

�
p

2�
e[��x�m�2/2�2] �3.11�

where m is the mean value of the data set x and the other quantities are as defined before.
Equation (3.11) is particularly useful for analysing a Gaussian set of measurements and
predicting how many measurements lie within some particular defined range. If the
measurement deviations D are calculated for all measurements such that D D x � m,
then the curve of deviation frequency F�D� plotted against deviation magnitude D is
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a Gaussian curve known as the error frequency distribution curve. The mathematical
relationship between F�D� and D can then be derived by modifying equation (3.11)
to give:

F�D� D 1

�
p

2�
e[�D2/2�2] �3.12�

The shape of a Gaussian curve is strongly influenced by the value of �, with the width
of the curve decreasing as � becomes smaller. As a smaller � corresponds with the
typical deviations of the measurements from the mean value becoming smaller, this
confirms the earlier observation that the mean value of a set of measurements gets
closer to the true value as � decreases.

If the standard deviation is used as a unit of error, the Gaussian curve can be used
to determine the probability that the deviation in any particular measurement in a
Gaussian data set is greater than a certain value. By substituting the expression for
F�D� in (3.12) into the probability equation (3.9), the probability that the error lies in
a band between error levels D1 and D2 can be expressed as:

P�D1 � D � D2� D
∫ D2

D1

1

�
p

2�
e��D2/2�2� dD �3.13�

Solution of this expression is simplified by the substitution:

z D D/� �3.14�

The effect of this is to change the error distribution curve into a new Gaussian distri-
bution that has a standard deviation of one �� D 1� and a mean of zero. This new
form, shown in Figure 3.7, is known as a standard Gaussian curve, and the dependent

0

F(z)

z

Fig. 3.7 Standard Gaussian curve �F�z� versus z�.
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variable is now z instead of D. Equation (3.13) can now be re-expressed as:

P�D1 � D � D2� D P�z1 � z � z2� D
∫ z2

z1

1

�
p

2�
e��z2/2� dz �3.15�

Unfortunately, neither equation (3.13) nor (3.15) can be solved analytically using tables
of standard integrals, and numerical integration provides the only method of solu-
tion. However, in practice, the tedium of numerical integration can be avoided when
analysing data because the standard form of equation (3.15), and its independence
from the particular values of the mean and standard deviation of the data, means that
standard Gaussian tables that tabulate F�z� for various values of z can be used.

Standard Gaussian tables
A standard Gaussian table, such as that shown in Table 3.1, tabulates F�z� for various
values of z, where F�z� is given by:

F�z� D
∫ z

�1

1

�
p

2�
e��z2/2� dz �3.16�

Thus, F�z� gives the proportion of data values that are less than or equal to z. This
proportion is the area under the curve of F�z� against z that is to the left of z. There-
fore, the expression given in (3.15) has to be evaluated as [F�z2� � F�z1�]. Study of
Table 3.1 shows that F�z� D 0.5 for z D 0. This confirms that, as expected, the number
of data values � 0 is 50% of the total. This must be so if the data only has random
errors. It will also be observed that Table 3.1, in common with most published standard
Gaussian tables, only gives F�z� for positive values of z. For negative values of z, we
can make use of the following relationship because the frequency distribution curve is
normalized:

F��z� D 1 � F�z� �3.17�

(F��z� is the area under the curve to the left of (�z), i.e. it represents the proportion
of data values � �z.)

Example 3.3
How many measurements in a data set subject to random errors lie outside deviation
boundaries of C� and ��, i.e. how many measurements have a deviation greater
than j�j?
Solution
The required number is represented by the sum of the two shaded areas in Figure 3.8.
This can be expressed mathematically as:

P�E < �� or E > C�� D P�E < ��� C P�E > C��

For E D ��, z D �1.0 (from equation 3.12).
Using Table 3.1:

P�E < ��� D F��1� D 1 � F�1� D 1 � 0.8413 D 0.1587
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Table 3.1 Standard Gaussian table

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

F�z�

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7793 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8906 0.8925 0.8943 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9924 0.9926 0.9928 0.9930 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9986 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Similarly, for E D C�, z D C1.0, Table 3.1 gives:

P�E > C�� D 1 � P�E < C�� D 1 � F�1� D 1 � 0.8413 D 0.1587.

(This last step is valid because the frequency distribution curve is normalized such that
the total area under it is unity.)

Thus

P[E < ��] C P[E > C�] D 0.1587 C 0.1587 D 0.3174 ¾ 32%

i.e. 32% of the measurements lie outside the š� boundaries, then 68% of the measure-
ments lie inside.

The above analysis shows that, for Gaussian-distributed data values, 68% of the
measurements have deviations that lie within the bounds of š�. Similar analysis shows
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E

F (E)

− s + s0

Fig. 3.8 š� boundaries.

that boundaries of š2� contain 95.4% of data points, and extending the boundaries to
š3� encompasses 99.7% of data points. The probability of any data point lying outside
particular deviation boundaries can therefore be expressed by the following table.

% of data points Probability of any particular data
Deviation boundaries within boundary point being outside boundary

š� 68.0 32.0%
š2� 95.4 4.6%
š3� 99.7 0.3%

Standard error of the mean
The foregoing analysis has examined the way in which measurements with random
errors are distributed about the mean value. However, we have already observed that
some error remains between the mean value of a set of measurements and the true value,
i.e. averaging a number of measurements will only yield the true value if the number of
measurements is infinite. If several subsets are taken from an infinite data population,
then, by the central limit theorem, the means of the subsets will be distributed about
the mean of the infinite data set. The error between the mean of a finite data set and
the true measurement value (mean of the infinite data set) is defined as the standard
error of the mean, ˛. This is calculated as:

˛ D �/
p

n �3.18�

˛ tends towards zero as the number of measurements in the data set expands towards
infinity. The measurement value obtained from a set of n measurements, x1, x2, Ð Ð Ð xn,
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can then be expressed as:
x D xmean š ˛

For the data set C of length measurements used earlier, n D 23, � D 1.88 and ˛ D 0.39.
The length can therefore be expressed as 406.5 š 0.4 (68% confidence limit). However,
it is more usual to express measurements with 95% confidence limits (š2� boundaries).
In this case, 2� D 3.76, 2˛ D 0.78 and the length can be expressed as 406.5 š 0.8 (95%
confidence limits).

Estimation of random error in a single measurement
In many situations where measurements are subject to random errors, it is not practical
to take repeated measurements and find the average value. Also, the averaging process
becomes invalid if the measured quantity does not remain at a constant value, as
is usually the case when process variables are being measured. Thus, if only one
measurement can be made, some means of estimating the likely magnitude of error in it
is required. The normal approach to this is to calculate the error within 95% confidence
limits, i.e. to calculate the value of the deviation D such that 95% of the area under
the probability curve lies within limits of šD. These limits correspond to a deviation
of š1.96�. Thus, it is necessary to maintain the measured quantity at a constant value
whilst a number of measurements are taken in order to create a reference measurement
set from which � can be calculated. Subsequently, the maximum likely deviation in
a single measurement can be expressed as: Deviation D š1.96�. However, this only
expresses the maximum likely deviation of the measurement from the calculated mean
of the reference measurement set, which is not the true value as observed earlier. Thus
the calculated value for the standard error of the mean has to be added to the likely
maximum deviation value. Thus, the maximum likely error in a single measurement
can be expressed as:

Error D š�1.96� C ˛� �3.19�

Example 3.4
Suppose that a standard mass is measured 30 times with the same instrument to create
a reference data set, and the calculated values of � and ˛ are � D 0.43 and ˛ D 0.08. If
the instrument is then used to measure an unknown mass and the reading is 105.6 kg,
how should the mass value be expressed?

Solution
Using (3.19), 1.96� C ˛ D 0.92. The mass value should therefore be expressed as:
105.6 š 0.9 kg.

Before leaving this matter, it must be emphasized that the maximum error specified
for a measurement is only specified for the confidence limits defined. Thus, if the
maximum error is specified as š1% with 95% confidence limits, this means that there
is still 1 chance in 20 that the error will exceed š1%.

Distribution of manufacturing tolerances
Many aspects of manufacturing processes are subject to random variations caused by
factors that are similar to those that cause random errors in measurements. In most
cases, these random variations in manufacturing, which are known as tolerances, fit a
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3.7 Self-test questions

3.1 Explain the difference between systematic and random errors. What are the typical
sources of these two types of error?

3.2 In what ways can the act of measurement cause a disturbance in the system being
measured?

3.3 Suppose that the components in the circuit shown in Figure 3.1(a) have the
following values:

R1 D 330 	; R2 D 1000 	; R3 D 1200 	; R4 D 220 	; R5 D 270 	.

If the instrument measuring the output voltage across AB has a resistance
of 5000 	, what is the measurement error caused by the loading effect of this
instrument?

3.4 Instruments are normally calibrated and their characteristics defined for partic-
ular standard ambient conditions. What procedures are normally taken to avoid
measurement errors when using instruments that are subjected to changing ambient
conditions?

3.5 The voltage across a resistance R5 in the circuit of Figure 3.10 is to be measured
by a voltmeter connected across it.
(a) If the voltmeter has an internal resistance (Rm) of 4750 	, what is the measure-

ment error?
(b) What value would the voltmeter internal resistance need to be in order to

reduce the measurement error to 1%?
3.6 In the circuit shown in Figure 3.11, the current flowing between A and B is

measured by an ammeter whose internal resistance is 100 	. What is the measure-
ment error caused by the resistance of the measuring instrument?

3.7 What steps can be taken to reduce the effect of environmental inputs in measure-
ment systems?

3.8 The output of a potentiometer is measured by a voltmeter having a resistance
Rm, as shown in Figure 3.12. Rt is the resistance of the total length Xt of the
potentiometer and Ri is the resistance between the wiper and common point C for
a general wiper position Xi. Show that the measurement error due to the resistance

200 Ω

300 Ω

500 Ω

V

R1

R2

R3 500 ΩR5

Rm

R4

250 Ω

Fig. 3.10 Circuit for question 3.5.
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B

Amps

500 Ω

(100 Ω)

150 Ω

Fig. 3.11 Circuit for question 3.6.

E Xt Rt

RmRi Xi

C

Fig. 3.12 Circuit for question 3.8.

Rm of the measuring instrument is given by:

Error D E
R2

i �Rt � Ri�

Rt�RiRt C RmRt � R2
i �

Hence show that the maximum error occurs when Xi is approximately equal to
2Xt/3. (Hint – differentiate the error expression with respect to Ri and set to 0.
Note that maximum error does not occur exactly at Xi D 2Xt/3, but this value is
very close to the position where the maximum error occurs.)

3.9 In a survey of 15 owners of a certain model of car, the following figures for
average petrol consumption were reported.

25.5 30.3 31.1 29.6 32.4 39.4 28.9 30.0 33.3 31.4 29.5 30.5 31.7 33.0 29.2

Calculate the mean value, the median value and the standard deviation of the
data set.
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3.10 (a) What do you understand by the term probability density function?
(b) Write down an expression for a Gaussian probability density function of given

mean value µ and standard deviation � and show how you would obtain the
best estimate of these two quantities from a sample of population n.

(c) The following ten measurements are made of the output voltage from a high-
gain amplifier that is contaminated due to noise fluctuations:

1.53, 1.57, 1.54, 1.54, 1.50, 1.51, 1.55, 1.54, 1.56, 1.53

Determine the mean value and standard deviation. Hence estimate the accuracy
to which the mean value is determined from these ten measurements. If one
thousand measurements were taken, instead of ten, but � remained the same, by
how much would the accuracy of the calculated mean value be improved?

3.11 The following measurements were taken with an analogue meter of the current
flowing in a circuit (the circuit was in steady state and therefore, although the
measurements varied due to random errors, the current flowing was actually
constant):

21.5 mA, 22.1 mA, 21.3 mA, 21.7 mA, 22.0 mA, 22.2 mA, 21.8 mA,

21.4 mA, 21.9 mA, 22.1 mA

Calculate the mean value, the deviations from the mean and the standard devia-
tion.

3.12 The measurements in a data set are subject to random errors but it is known that
the data set fits a Gaussian distribution. Use standard Gaussian tables to determine
the percentage of measurements that lie within the boundaries of š1.5�, where
� is the standard deviation of the measurements.

3.13 The thickness of a set of gaskets varies because of random manufacturing distur-
bances but the thickness values measured belong to a Gaussian distribution. If
the mean thickness is 3 mm and the standard deviation is 0.25, calculate the
percentage of gaskets that have a thickness greater than 2.5 mm.

3.14 A 3 volt d.c. power source required for a circuit is obtained by connecting together
two 1.5 V batteries in series. If the error in the voltage output of each battery
is specified as š1%, calculate the likely maximum possible error in the 3 volt
power source that they make up.

3.15 In order to calculate the heat loss through the wall of a building, it is necessary to
know the temperature difference between the inside and outside walls. If temper-
atures of 5°C and 20°C are measured on each side of the wall by mercury-in-glass
thermometers with a range of 0°C to C50°C and a quoted inaccuracy figure of
š1% of full-scale reading, calculate the likely maximum possible error in the
calculated figure for the temperature difference.

3.16 The power dissipated in a car headlight is calculated by measuring the d.c. voltage
drop across it and the current flowing through it �P D V ð I�. If the possible
errors in the measured voltage and current values are š1% and š2% respectively,
calculate the likely maximum possible error in the power value deduced.

3.17 The resistance of a carbon resistor is measured by applying a d.c. voltage across
it and measuring the current flowing �R D V/I�. If the voltage and current values
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are measured as 10 š 0.1 V and 214 š 5 mA respectively, express the value of
the carbon resistor.

3.18 The density (d) of a liquid is calculated by measuring its depth (c) in a calibrated
rectangular tank and then emptying it into a mass measuring system. The length
and width of the tank are (a) and (b) respectively and thus the density is given by:

d D m/�a ð b ð c�

where m is the measured mass of the liquid emptied out.
If the possible errors in the measurements of a, b, c and m are 1%, 1%, 2% and
0.5% respectively, determine the likely maximum possible error in the calculated
value of the density (d).

3.19 The volume flow rate of a liquid is calculated by allowing the liquid to flow
into a cylindrical tank (stood on its flat end) and measuring the height of the
liquid surface before and after the liquid has flowed for 10 minutes. The volume
collected after 10 minutes is given by:

Volume D �h2 � h1���d/2�2

where h1 and h2 are the starting and finishing surface heights and d is the
measured diameter of the tank.

(a) If h1 D 2 m, h2 D 3 m and d D 2 m, calculate the volume flow rate in m3/min.
(b) If the possible error in each measurement h1, h2 and d is š1%, determine the

likely maximum possible error in the calculated value of volume flow rate.
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